Synthesis and biological evaluation of dihydropyrano-[2,3-c]pyrazoles as a new class of PPARγ partial agonists
نویسندگان
چکیده
Peroxisome proliferator-activated receptor γ (PPARγ) is a well-known target for thiazolidinedione antidiabetic drugs. In this paper, we present the synthesis and biological evaluation of a series of dihydropyrano[2,3-c]pyrazole derivatives as a novel family of PPARγ partial agonists. Two analogues were found to display high affinity for PPARγ with potencies in the micro molar range. Both of these hits were selective against PPARγ, since no activity was measured when tested against PPARα, PPARδ and RXRα. In addition, a novel modelling approach based on multiple individual flexible alignments was developed for the identification of ligand binding interactions in PPARγ. In combination with cell-based transactivation experiments, the flexible alignment model provides an excellent analytical tool to evaluate and visualize the effect of ligand chemical structure with respect to receptor binding mode and biological activity.
منابع مشابه
Nickel ferrite as a recyclable nanocatalyst for synthesis of novel highly substituted 1,4-dihydropyrano[2,3-c]pyrazole derivatives
Highly substituted 1,4-dihydropyrano[2,3-c]pyrazole derivatives were synthesized by four-component reaction of aromatic aldehydes, malononitrile, ethyl acetoacetate and various phenylhydrazine, using nickel ferrite as a recyclable nanocatalyst by a grinding method under solvent-free and thermal conditions. The reaction has the advantages of good yields, less pollution, ease of separation of the...
متن کاملFe-MCM-22 catalyzed multicomponent synthesis of dihydropyrano [2,3-c] pyrazole derivatives
The Fe-MCM-22 zeolite was found to be an efficient solid heterogeneous catalyst for synthesis of dihydropyrano [2,3-c] pyrazoles via one pot four component reaction of ethyl acetoacetate, hydrazine hydrate, aromatic aldehyde and malononitrile in aqueous alcohol. The catalyst was synthesized by hydrothermal method under autogenous pressure and modified by Fe (III) ion exchange. The prepared cata...
متن کاملFe-MCM-22 catalyzed multicomponent synthesis of dihydropyrano [2,3-c] pyrazole derivatives
The Fe-MCM-22 zeolite was found to be an efficient solid heterogeneous catalyst for synthesis of dihydropyrano [2,3-c] pyrazoles via one pot four component reaction of ethyl acetoacetate, hydrazine hydrate, aromatic aldehyde and malononitrile in aqueous alcohol. The catalyst was synthesized by hydrothermal method under autogenous pressure and modified by Fe (III) ion exchange. The prepared cata...
متن کاملFe3O4@FSM-16-SO3H as a new magnetically recyclable nanostructured catalyst: synthesis, characterization and catalytic application for the synthesis of pyrano[2,3-c]pyrazoles
A three-component process for the one-pot synthesis of 6-amino-4-aryl-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles is described by the three-component reaction of aldehydes, 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one and malononitrile in the presence of Fe3O4@FSM-16-SO3H as an efficient magnetically recyclable mesoporous catalyst. Folded shee...
متن کاملFe3O4@FSM-16-SO3H as a new magnetically recyclable nanostructured catalyst: synthesis, characterization and catalytic application for the synthesis of pyrano[2,3-c]pyrazoles
A three-component process for the one-pot synthesis of 6-amino-4-aryl-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles is described by the three-component reaction of aldehydes, 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one and malononitrile in the presence of Fe3O4@FSM-16-SO3H as an efficient magnetically recyclable mesoporous catalyst. Folded shee...
متن کامل